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SUMMARY 

. Gas chromatographic analysis by the linear relationship method and the least- 
squares procedure reveals important features of the multicomponent system investi- 
gated. This enables the precision of qualitative and quantitative analyses and the 
chromatographic behaviour of the system to be determined. 

INTRODUCTION 

The area factors related to any standard can be determined by the linear rela- 
tionship method (L.R.M.), even when the pure components of analysed mixtures are 
not available+. The usefulness of L.R.M. has been shown in the quantitative analysis 
of three- and four-component mixtures 2. The use of a gas density detector makes it 
possible to determine the molecular weights of unknown components from vcalues of 
their area factor@. Other specific properties of components of complex mixtures, such 
as refractive index and heat of combustion, could be determined by L.R.M. by using 
detectors that respond to these properties. 

The response of the thermal conductivity and flame ionisation detectors, and 
also other detectors, is usually some function of a specific property of chemical com- 
pounds. Nevertheless, the area factors determined could be used not only for quanti- 
tative analysis but also for qualitative analysis of specific characteristics of the com- 
ponents of complex mixtures together with retention times or Kovats. retention 
‘. 
indices. 

The quantitative composition of complex mixtures can easily be determined by 
:L.R.M. and this gives a new basis for the evaluation of the infrared spectra of individ- 
ual components from the spectra of complex mixtures4. 

*,The use of L.R.M. is not restricted to gas chromatography, but can also be 
applied to other chromatographic ,and separation techniques that obey accepted 
assumptions, , 

The scope of application of L.R.M. seems to’be very wide and it is desirable to 
discuss the precision of the method, In this paper, L.R.M. is discussed in terms of the 
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least-squares procedure6 and some special cases of gas chromatographic analysis are 
also discussed. i! 

” 

THEORETllCAL 

Let us assume that all assumptions that form the basis for L.R.M. are obeyed 
and that we are dealing with peak areas biased with random errors. Then, for proce- 
dure I (ref. I), we can write 

1 + EbZ (2) 

and for procedure 3 (ref. I) .+ 

(3) 

= area factor of component i related to the area factor of 
standard s ; 

k!ik * = (weight of sample Z)/(weight of the standard s added to it). 
We may accept this value as being unbiased with error as 
the weighing accuracy is high ; 

?& = area factor of component i related to the constant amount of 
sample injected into the chromatograph (by volume or 
weight) ; 

h P,l = peak areas of component i and standard. s of sample ‘i, I’ 
respectively ; 

8all w and. EON = total errors of the corresponding equation for sample ‘2 (or 
injection, if the sample has been injected many times). 

The errors in eqns. I, 2 and 3 depend, first of alI, on the errors in the area: 
measurement. The error in the area measurement includes the reliability of the 
detector; electrical circuits, and all parameters that influence the recording of the 
signal; as well as the error in the area measurement itself, I 

All-the equations of procedures I and 3 can be expressed in matrix notation by 

PKO =YJrs (4) ‘,: 
where ,’ 

‘. P F the rectangular matrix m 'X PZ of peak areas Pz~ for eqns. I and ‘3, and ‘, 

values, Pt~/(k”tsP~,), for eqn. 2 (matrix of independent variables) ; 

KO 
+M 

Y 
= F x I: column:vector of the area factors’ of parameters being estimated;. $ 
T‘ v >i. I g column vector of Ia?&, or I (vector of observations) ; I/ ‘1,. 

“8 =’ m .x z ,vector of errors;, 8, 

m“ ‘L ‘.nuniber of saniples ; 
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The exact values of the column vector of errors are not known, so we are not 
able to calculate the true values of the area factors Iz”te or /soi but only their best 
estimation by the least-squares procedure : 

(5) 
with variances 

V(K) = (P’P)-$9 C6! 

estimation of vector K”; 
the residual sum of squares divided by the residual degrees of frec- 
dom ; 

P’ 
(p’p)-1 E 

transpose of the matrix P; 
variance-covariance matrix. 

The variance of 9 for given vector I can be estimated from the equation : 

V(P) = P’l (P'P)-v$ 62 (7) 

where 

Pz’ and PI are the versus and column vectors, respectively; 
9 = the value calculated from the regression equation for given vector Pt. 

V(p) represents the precision of the quantitative determination and can be 
used for the estimation of the confidence limits for the sum of the concentrations of 
all components of the sample or the sum of normalized peak areas. Thus, the ratio 
V(p)/p can be applied as the criterion for the choice of the best detector for the 
analysis of a given sample. 

Eqn. 6 characterizes the’ ‘Grecision of the determination of the related area 
factors lzce as’characteristics or physical constants of the components for qualitative 
analysis, 

Eqns. 6 and 7 are valid for any sample that was used for estimation of the area 
factors. Therefore, if the calculations are performed with the aid of a computer, then 
it is reasonable to add data for newly determined samples to a previously accumulated 
set of data to calculate a new variance-covariance matrix and a new set of the area 
factors with higher precision. 

DISCUSSION 

To be certain that the area factors and other results based on them are reliable, 
the fit of the experimental values into eqn. I, 2 or 3 must be checked, and to do this 
the contribution of the “pure error” sum of squares and the “lack of fit” sum of 
squares to the residual sum of squares must be founds. To estimate the “pure error” 
sum of squares, exactly equal amounts of some samples should be injected into the 
column. This can easily be achieved for procedure 3, but such a requirement is not 
possible in procedure I. In the latter case, if many repeated, injections of the same 
amount of sample do not give a response within the linear range of, the detector, the 
“pure error” sum of squares may contain a contribution from the “lack of fit” sum of 
squares. 
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If the accepted models, i.e., eqns. I; 2 and 3, were strictly obeyed, no “lack of 
fit” sum of squares should be observed. The existence of the “lack of fit” sum of 
squares indicates that tile assumptions accepted for L.R.M. are not strictly valid for 
the multicomponent system analysed. 

In practice, we may meet at least one of the following situations that result in 
the “lack of fit” sum of squares making a large contribution to the residual sum of 
squares, or the lack of fit even become significant. 

I. Peaks are com$oscd of more than one contfionent 
The “lack of fit” sum of squares will be observed if the area factors of the 

components that are eluted as a single peak differ in value. As this situation occurs 
the most often, it is quite simple to decide whether or not all the components of the 
sample have been separated. 

II. One OY more com$omnts of the snvn@e am absorbed in the column ’ 

In this case, no “lack of fit” sum of squares will be observed if the concentra- 
tions of absorbed components are constant for all the samples, but this has very little 
probability of occurring. If the “lack of fit” sum of squares is due to the absorption 
of any component in the column, then L.R.M, cannot be applied directly. If the range 
of linearity of the detector is small, then L.R,M. cannot be applied in the determina- 
tion of very small or trace concentrations of components. Both instances are similar 
and they can therefore be treated together. In first instance, from a given set of sam- 
ples, the set of samples that contain all the components except those absorbed in the 
column must be obtained, and in the second the set of samples that contain the trace 
components as principal ones must be obtained. Distillation can be used for this 
purpose. 

The area factors of components of a set of samples obtained in this manner can 
be determined by procedure I. If the same standard is added to the original set of 
samples, the percentage fractions of eluted or trace’ components can be determined 
from the relation 

III. The detector does not work in a &car mode 
This situation has been discussed, previously 1. It can be added that a higher- 

order relation than two should be checked. 

IV. Tke existeme of a systematic CYYOY 
A systematic error in peak area measurement seems to be difficult to avoid. The 

peaks ‘are not strictly symmetrical and the “evaluation” of any peak from the zero 
line and its neighbouring peaks usually causes the systematic over- or under-estima- 
tion of its area. In such a situation, we can accept some assumptions concerning the 
values of systematic, errors for all or some of the, peaks. If thdse assumptions’ are 
reasonable;they will cause a significant decrease in the “lack of fit” sum of scluares, 

The standard should be chromatographically pure and give a symmetrical, well 
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resolved peak. Its clegree of impurity will influence the values of korr~PRl and is therefore 
a serious source of systematic error. 

This discussion leads to the conclusion that the application of L.R.M. and the 
least-squares procedure reveals very important features of the multicomponent system 
investigated. 

It can also be said that the utility and the scope of application of L.R.M. will 
depend on the range of linearity of detectors, their sensitivity and reliability, reac- 
tion for some specific property of chemical compounds, and the accuracy of peak area 
measurements. 
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